Abstract

The dewatering treatment is an essential process for the treatment and disposal of surplus activated sludge (SAS), and improving sludge dewatering performance is still a challenge and has become a research hotspot in recent years. The oxidation and disintegration of bacterial cells and extracellular polymeric substances (EPS) by active radicals produced by advanced oxidation processes (AOPs) were extremely promising to achieve deep sludge dewatering. This paper systematically studied the efficiency and mechanism of thermally activated persulfate (TAP) oxidation technology to the improvement of SAS dewatering performance. The results showed that the relative filterability (CST0/CST) was increased 2.52 times with 2.0 mmol/g VSS potassium peroxydisulfate (PDS) at 80 °C in 90 min. Under this condition, the Zeta potential of SAS significantly decreased from - 14.8 to - 1.44 mV, while the average particle size (dp50) decreased from 52.981 to 48.259 μm. Thermal treatment disrupted the sludge structure to release large amounts of EPS including polysaccharides and protein. Meanwhile, the results of three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectra showed that the TAP treatment could expedite the disintegration of sludge, facilitating the decrease of total EPS content and conversion of tightly bound EPS (TB-EPS) to loosely bound EPS (LB-EPS) and soluble EPS (S-EPS). The mechanism of TAP process to improve SAS dewatering performance was revealed, which could contribute to breaking the bottleneck of sludge depth dewatering and provide a theoretical and technical basis for its practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.