Abstract

We propose a new class of optoelectronic devices in which the optical properties of the active material is enhanced by strain generated from micromechanical structures. As a concrete example, we modeled the emission efficiency of strained germanium supported by a cantilever-like platform. Our simulations indicate that net optical gain is obtainable even in indirect germanium under a substrate biaxial tensile strain of about 1.75% with an electron-hole injection concentration of 9 x 10(18) cm(-3) while direct bandgap germanium becomes available at a strain of 2%. A large wavelength tuning span of 300 nm in the mid-IR range also opens up the possibility of a tunable on-chip germanium biomedical light source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.