Abstract

ABSTRACTMultiwalled carbon nanotubes (MWCNTs) can endow high dielectric constant to polymer‐based composites. However, the accompanying poor dispersion of MWCNTs and high dielectric loss for composites severely limit their application in dielectric field. Herein, a modified acid‐treated MWCNTs encapsulated by the polyaniline/poly(sodium 4‐styrenesulfonate) layers (aMWCNTs@PANI‐PSS) with a one core‐two shell structure was fabricated by in situ polymerization followed by electrostatic self‐assembly technique. Furthermore, the composite films based on aMWCNTs@PANI‐PSS/poly(vinylidenefluoride‐hexaflouropropylene) (PVDF‐HFP) were fabricated by a solution‐casting method. An ultrathin insulating PSS shell is wrapped onto aMWCNTs@PANI, resulting in the improvement of dispersibility for aMWCNTs@PANI and the decrease of dielectric loss for composite films. When the content of aMWCNTs@PANI‐PSS is 5.0 wt %, the dielectric constant of aMWCNTs@PANI‐PSS/PVDF‐HFP reaches 430 (100 Hz), which is about 55 times of pure PVDF‐HFP and 1.7 times of aMWCNTs@PANI/PVDF‐HFP (247). Besides, the responding dielectric loss of aMWCNTs@PANI‐PSS/PVDF‐HFP composite film is only 0.67, much lower than that of aMWCNTs@PANI/PVDF‐HFP (25) and aMWCNTs/PVDF‐HFP (3185). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 948–956

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.