Abstract

Propylene carbonate shows appealing prospects as an energy storage medium in the compact pulsed power sources because of its large permittivity, high dielectric strength, and broad operating temperature range. In this paper, TiO2 nano-particles coated with γ-aminopropyltriethoxylsilane coupling agent are homogeneously dispersed into propylene carbonate and these nano-fluids (NFs) exhibit substantially larger breakdown voltages than those of pure propylene carbonate. It is proposed that interfaces between nano-fillers and propylene carbonate matrix may provide myriad trap sites for charge carriers. The charge carriers can be easily captured at the interfaces between NFs and the electrode, resulting in an increased barrier height and suppressed charge carriers injection, and in the bulk of NFs, the charge carriers' mean free path can be greatly shortened by the scattering effect. As a result, in order for charge carriers acquiring enough energy to generate a region of low density (the bubble) and initiate breakdown in NFs, much higher applied field is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.