Abstract

To compare the diagnostic capability of 3-dimensional (3D) neuroretinal rim parameters with existing 2-dimensional (2D) neuroretinal and retinal nerve fiber layer (RNFL) thickness rim parameters using spectral domain optical coherence tomography (SD-OCT) volume scans. Design: Institutional prospective pilot study. 65 subjects (35 open-angle glaucoma patients, 30 normal patients). One eye of each subject was included. SD-OCT was used to obtain 2D RNFL thickness values and 5 neuroretinal rim parameters [ie, 3D minimum distance band (MDB) thickness, 3D Bruch's membrane opening-minimum rim width (BMO-MRW), 3D rim volume, 2D rim area, and 2D rim thickness]. Area under the receiver operating characteristic curve values, sensitivity, and specificity. Comparing all 3D with all 2D parameters, 3D rim parameters (MDB, BMO-MRW, rim volume) generally had higher area under the receiver operating characteristic curve values (range, 0.770 to 0.946) compared with 2D parameters (RNFL thickness, rim area, rim thickness; range, 0.678 to 0.911). For global region analyses, all 3D rim parameters (BMO-MRW, rim volume, MDB) were equal to or better than 2D parameters (RNFL thickness, rim area, rim thickness; P-values from 0.023 to 1.0). Among the three 3D rim parameters (MDB, BMO-MRW, and rim volume), there were no significant differences in diagnostic capability (false discovery rate >0.05 at 95% specificity). 3D neuroretinal rim parameters (MDB, BMO-MRW, and rim volume) demonstrated better diagnostic capability for primary and secondary open-angle glaucomas compared with 2D neuroretinal parameters (rim area, rim thickness). Compared with 2D RNFL thickness, 3D neuroretinal rim parameters have the same or better diagnostic capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call