Abstract

Rabies is a neglected zoonotic disease with veterinary and public health significance, particularly in Africa and Asia. The current knowledge of the epidemiology of rabies in Mozambique is limited because of inadequate sample submission, constrained diagnostic capabilities and a lack of molecular epidemiological research. We wanted to consider the direct, rapid immunohistochemical test (DRIT) as an alternative to the direct fluorescent antibody (DFA) for rabies diagnosis at the diagnostic laboratory of the Central Veterinary Laboratory (CVL), Directorate of Animal Science, Maputo, Mozambique. Towards this aim, as a training exercise at the World Organisation for Animal Health (OIE) Rabies Reference Laboratory in South Africa, we performed the DRIT on 29 rabies samples from across Mozambique. With the use of the DRIT, we found 15 of the 29 samples (52%) to be negative. The DRIT-negative samples were retested by DFA at the OIE Rabies Reference Laboratory, as well as with an established real-time Polymerase chain reaction, confirming the DRIT-negative results. The DRIT-positive results (14/29) were retested with the DFA and subsequently amplified, sequenced and subjected to phylogenetic analyses, confirming the presence of rabies RNA. Molecular epidemiological analyses that included viruses from neighbouring countries suggested that rabies cycles within Mozambique might be implicated in multiple instances of cross-border transmission. In this regard, our study has provided new insights that should be helpful in informing the next steps required to better diagnose, control and hopefully eliminate rabies in Mozambique.

Highlights

  • The aetiological agent of rabies, rabies virus (RABV), is a member of the Lyssavirus genus and accounts for tens of thousands of human deaths every year (World Health Organization [WHO] 2013)

  • Rabies on the African continent is typically maintained within the mammalian order Carnivora, and the majority of deaths in resource-limited countries are associated with RABV cycles in dogs (Canis lupus familiaris) (WHO 2013)

  • All but one of the samples that were DRIT and direct fluorescent antibody (DFA)-positive were subsequently sequenced for the molecular phylogenetic analyses, whilst the DRITnegative samples were tested using a real-time polymerase chain reaction (PCR) for further confirmation of the negative result

Read more

Summary

Introduction

The aetiological agent of rabies, rabies virus (RABV), is a member of the Lyssavirus genus and accounts for tens of thousands of human deaths every year (World Health Organization [WHO] 2013). Rabies on the African continent is typically maintained within the mammalian order Carnivora, and the majority of deaths in resource-limited countries are associated with RABV cycles in dogs (Canis lupus familiaris) (WHO 2013). Several other carnivores such as the black-backed jackal (Canis mesomelas) and the bat-eared fox (Otocyon megalotis) are able to maintain cycles of rabies and subsequently contribute to the spread of the disease (Bishop et al 2010; Sabeta et al 2007; Swanepoel 1993; Zulu, Sabeta & Nel 2009). During the 1950s, rabies spread eastwards from the Mpumalanga province in South Africa to Mozambique, moving eastward to the Kingdom of Swaziland (1954) and south-eastward to the KwaZulu-Natal (KZN) province of South Africa (1961 and 1974) (Swanepoel 1993)

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.