Abstract
Pneumothorax is a common pulmonary disease that can lead to dyspnea and can be life-threatening. X-ray examination is the main means to diagnose this disease. Computer-aided diagnosis of pneumothorax on chest X-ray, as a prerequisite for a timely cure, has been widely studied, but it is still not satisfactory to achieve highly accurate results. In this paper, an image classification algorithm based on the deep convolutional neural network (DCNN) is proposed for high-resolution medical image analysis of pneumothorax X-rays, which features a Network In Network (NIN) for cleaning the data, random histogram equalization data augmentation processing, and a DCNN. The experimental results indicate that the proposed method can effectively increase the correct diagnosis rate of pneumothorax, and the Area under Curve (AUC) of the test verified in the experiment is 0.9844 on ZJU-2 test data and 0.9906 on the ChestX-ray14, respectively. In addition, a large number of atmospheric pleura samples are visualized and analyzed based on the experimental results and in-depth learning characteristics of the algorithm. The analysis results verify the validity of feature extraction for the network. Combined with the results of these two aspects, the proposed X-ray image processing algorithm can effectively improve the classification accuracy of pneumothorax photographs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.