Abstract

The Coronavirus Disease 2019 (COVID-19) has rapidly spread globally, causing a significant impact on public health. This study proposes a predictive model employing machine learning techniques to distinguish between influenza-like illness and COVID-19 based on clinical symptoms and diagnostic parameters. Leveraging a dataset sourced from BMC Med Inform Decis Mak, comprising cases of influenza and COVID-19, we explore a diverse set of features, including clinical symptoms and blood assay parameters. Two prominent machine learning algorithms, XGBoost and Random Forest, are employed and compared for their predictive capabilities. The XGBoost model, in particular, demonstrates superior accuracy with an AUC under the ROC curve of 98.8%, showcasing its potential for clinical diagnosis, especially in settings with limited specialized testing equipment. Our model's practical applicability in community-based testing positions it as a valuable tool for efficient COVID-19 detection. This study advances the field of predictive modeling for disease detection, offering promising prospects for improved public health outcomes and pandemic response strategies. The model's reliability and effectiveness make it a valuable asset in the ongoing fight against the COVID-19 pandemic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.