Abstract
Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection. This research explores a hybrid approach combining UNet++ and Capsule Network (CapsNet) architectures for accurate glaucoma diagnosis. UNet++ is employed for semantic segmentation, focusing on defining optic discs and cups, which are crucial for detecting the disease. CapsNet leverages its ability to recognize hierarchical patterns, providing more sensitive detection of glaucomatous changes than conventional Convolutional Neural Networks. Pre-processing of retinal images involves advanced techniques like Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance image quality. The model is trained and tested on benchmark datasets, showing superior performance in optic cup/disc segmentation and glaucoma detection accuracy compared to existing state-of-the-art models.• Hybrid Model Efficiency: The combined use of UNet++ and CapsNet offers improved accuracy in optic cup and disc segmentation.• Enhanced Image Quality: Application of Histogram Equalization and CLAHE techniques significantly boosts the quality of retinal images.• Superior Performance: The hybrid approach outperforms traditional and contemporary models in glaucoma detection accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.