Abstract

We demonstrate that increasing the hydrophobic environment around the charge center of a polyelectrolyte (PE) not only decreases the water content of an adsorbed PE layer but can even dewater up to ~50% of an initially hydrated substrate. The results of this work are expected to yield new stratagies to dewater PE systems and have potential applications in mineral recovery, paper manufacturing, and biomedical materials. Adsorption of a series of cationically derivatized dextran polyelectrolytes onto sulfated nanocrystalline cellulose (SNC) has been studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR). Synthesized samples of (N,N-dimethylamino)ethyldextran (DMAE-Dex), (N,N-diethylamino)ethyldextran (DEAE-Dex), and (N,N-diisopropylamino)ethyldextran (DIAE-Dex) had degrees of substitution (DS) ranging from 0.05 to 0.82. DMAE-Dex, DEAE-Dex, and DIAE-Dex all showed decreasing adsorption onto SNC and decreasing water content of the adsorbed film with increasing DS. Additionally, DEAE-Dex and DIAE-Dex films adsorbed onto SNC contained less water than DMAE-Dex films with the same DS. Interestingly, QCM-D results for high DS DIAE-Dex adsorbed onto SNC revealed mass loss, whereas SPR results clearly showed DIAE-Dex adsorbed. These observations were consistent with dehydration of the SNC substrate. This study indicates that the water content of the substrate could be tailored by controlling the DS and hydrophobic character of the adsorbed polyelectrolytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.