Abstract

Diffusion-weighted imaging (DWI) is sensitive to the cerebral manifestations of human prion diseases. The magnitude of diffusion weighting, termed "b factor," has only been evaluated at the standard b = 1000 s/mm(2). This is the first rigorous evaluation of b = 2000 s/mm(2) in Creutzfeldt-Jakob Disease (CJD). We compared DWI characteristics of 13 patients with CJD and 15 healthy controls at b = 1000 s/mm(2) and b = 2000 s/mm(2). Apparent diffusion coefficients (ADC) were computed and analyzed for the whole brain by voxel-wise analysis (by SPM5) as well as in anatomically defined volumes of interest (by FSL FIRST). Measured ADC was significantly lower (by approximately 5%-15%) at b = 2000 s/mm(2) than at b = 1000 s/mm(2) and significantly lower in patients than in controls. The differences between patients and controls were greater and more extensive at b = 2000 s/mm(2) than at b = 1000 s/mm(2) in the expected regions (thalamus, putamen, and caudate nucleus). Because higher b factors change the absolute value of observed ADC, as well as lesion detection, care should be taken when combining studies using different b factors. While the clinical application of high b factors is currently limited by a low signal intensity-to-noise ratio, it may offer more information in questionable cases, and our results confirm and extend the central role of diffusion imaging in human prion diseases.

Highlights

  • AND PURPOSE: Diffusion-weighted imaging (DWI) is sensitive to the cerebral manifestations of human prion diseases

  • While the clinical application of high b factors is currently limited by a low signal intensity–to-noise ratio, it may offer more information in questionable cases, and our results confirm and extend the central role of diffusion imaging in human prion diseases

  • Familial Creutzfeldt-Jakob Disease (CJD), caused by mutations of the gene encoding the normal form of the prion protein (PrPc), accounts for approximately 10% of cases worldwide

Read more

Summary

Objectives

Such high b factor studies have been reported to provide better detection of ischemic stroke, as well as white matter damage in Alzheimer disease and vascular dementia.. We aimed to evaluate the utility of this technique in CJD

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.