Abstract

Ship detection in large-scene offshore synthetic aperture radar (SAR) images is crucial in civil and military fields, such as maritime management and wartime reconnaissance. However, the problems of low detection rates, high false alarm rates, and high missed detection rates of offshore ship targets in large-scene SAR images are due to the occlusion of objects or mutual occlusion among targets, especially for small ship targets. To solve this problem, this study proposes a target detection model (TAC_CSAC_Net) that incorporates a multi-attention mechanism for detecting marine vessels in large-scene SAR images. Experiments were conducted on two public datasets, the SAR-Ship-Dataset and high-resolution SAR image dataset (HRSID), with multiple scenes and multiple sizes, and the results showed that the proposed TAC_CSAC_Net model achieves good performance for both small and occluded target detection. Experiments were conducted on a real large-scene dataset, LS-SSDD, to obtain the detection results of subgraphs of the same scene. Quantitative comparisons were made with classical and recently developed deep learning models, and the experiments demonstrated that the proposed model outperformed other models for large-scene SAR image target detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.