Abstract
To early identify cylindrical roller bearing failures, this paper proposes a comprehensive bearing fault diagnosis method, which consists of spectral kurtosis analysis for finding the most informative subband signal well representing abnormal symptoms about the bearing failures, fault signature calculation using this subband signal, enhanced distance evaluation technique- (EDET-) based fault signature analysis that outputs the most discriminative fault features for accurate diagnosis, and identification of various single and multiple-combined cylindrical roller bearing defects using the simplified fuzzy adaptive resonance map (SFAM). The proposed comprehensive bearing fault diagnosis methodology is effective for accurate bearing fault diagnosis, yielding an average classification accuracy of 90.35%. In this paper, the proposed EDET specifically addresses shortcomings in the conventional distance evaluation technique (DET) by accurately estimating the sensitivity of each fault signature for each class. To verify the efficacy of the EDET-based fault signature analysis for accurate diagnosis, a diagnostic performance comparison is carried between the proposed EDET and the conventional DET in terms of average classification accuracy. In fact, the proposed EDET achieves up to 106.85% performance improvement over the conventional DET in average classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.