Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by infiltration of inflammatory cells, destruction of lung parenchyma, and airway wall remodeling. Hyaluronan (HA) is a component of the extracellular matrix, and low-molecular-weight (LMW) HA fragments have proinflammatory capacities. We evaluated the presence of HA in alveolar and airway walls of C57BL/6 mice that were exposed to air or cigarette smoke (CS) for 4 weeks (subacute) or 24 weeks (chronic). We measured deposition of the extracellular matrix proteins collagen and fibronectin in airway walls and determined the molecular weight of HA purified from lung tissue. In addition, we studied the expression of HA-modulating genes by RT-PCR. HA staining in alveolar walls was significantly enhanced upon chronic CS exposure, whereas HA levels in the airway walls were already significantly higher upon subacute CS exposure and remained elevated upon chronic CS exposure. This differed from the deposition of collagen and fibronectin, which are only elevated at the chronic time point. In lungs of CS-exposed mice, the molecular weight of HA clearly shifted toward more LMW HA fragments. CS exposure significantly increased the mRNA expression of the HA synthase gene Has3 in total lung tissue, whereas the expression of Has1 was decreased. These in vivo studies in an experimental model of COPD show that CS exposure leads to enhanced deposition of (mostly LMW) HA in alveolar and bronchial walls by altering the expression of HA-modulating enzymes. This may contribute to airway wall remodeling and pulmonary inflammation in COPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.