Abstract

The densification kinetics of Ti–6Al–4V powders with spherical or angular shapes are compared in uniaxial die pressing experiments between isothermal conditions (at 1020 °C, in the β-field, where deformation occurs by creep) and thermal cycling (between 860 and 1020 °C, within the range of the α–β phase transformation of the alloy, where transformation-mismatch plasticity is activated). Densification kinetics are only moderately affected by powder shape, but are markedly faster under thermal cycling than under isothermal conditions, as expected from the higher deformation rate achieved under transformation-mismatch plasticity conditions as compared to creep conditions. The densification curves for both creep and mismatch plasticity deformation mechanisms are successfully modeled for various applied stresses and for partial cycling, when transformation is incomplete. Tensile properties of specimens fully densified under thermal cycling conditions are similar to literature values from Ti–6Al–4V densified by isothermal hot isostatic pressing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.