Abstract

To explore the feasibility of drug delivery to the liver by the use of adenovirus-mediated human oligopeptide transporter (hPEPT1) gene transfer, we examined the accumulation of L-[(3)H]carnosine in the hepatoma cell line (HepG2 and WIFB9) and mouse liver. We constructed a recombinant adenovirus encoding hPEPT1-enhanced yellow fluorescent protein (EYFP) fusion gene (AdhPEPT1-EYFP). In vitro uptake of L-[(3)H]carnosine was determined in HepG2 and WIFB9 cells transduced with AdhPEPT1-EYFP. In vivo, the accumulation of L-[(3)H]carnosine in mouse liver was evaluated after transduction of AdhPEPT1-EYFP. At pH 6.0, the uptake of L-[(3)H]carnosine by HepG2 and WIFB9 cells transduced with AdhPEPT1-EYFP was increased 15- and 2-fold, respectively, compared with the cells without transduction. At pH 7.4, uptake of L-[(3)H]carnosine in AdhPEPT1-EYFP transduced HepG2 cells was 3 times greater than that of nontransduced cells. In the presence of carnosine or glycylsarcosine as an inhibitor at 20 mM, the uptake of L-[(3)H]carnosine was reduced to a level comparable to that of nontransduced cells. At 30 min after intravenous administration of L-[(3)H]carnosine to mice transduced with AdhPEPT1-EYFP at 1 x 10(10) plaque-forming units/mouse, the tissue-to-plasma concentration ratio (K(p)) of L-[(3)H]carnosine in the liver was significantly increased to 7 times that of nontransduced mice. In contrast, the K(p) value of [(14)C]inulin, a marker for extracellular fluid space, remained unchanged after adenoviral transduction suggesting minimal pathological damage of tissues. hPEPT1-EYFP was localized at both the basolateral and apical membranes in HepG2 cells, WIFB9 cells, and mouse liver. In conclusion, our results suggest that delivery of oligopeptide to the liver by adenovirus-mediated heterologous expression of hPEPT1 in vivo is feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call