Abstract

Remediation of petroleum-contaminated soil is a widely concerned challenge. As an ecofriendly method, the performance improvement of indigenous microbial degradation is facing the bottleneck. In this study, a strain with high efficiency of petroleum degradation was isolated from the petroleum-contaminated soil and identified and named as Bacillus sp. Z-13. The strain showed the ability to produce lipopeptide surfactant which could improve 66% more petroleum hydrocarbons eluted. Strain Z-13 and its biosurfactant exhibited broad environmental adaptability to salinity (0–8%), pH (6−9) and temperature (15–45 °C). With the addition of strain Z-13 and the stimulation of NH4Cl, up to 59% of the petroleum in the contaminated soil was removed at the carbon to nitrogen ratio of 10. Microbial community analysis showed that petroleum-degrading bacteria, represented by Bacillus, became the dominant species at genus level and played an important role in the remediation. Additionally, ammonium stimulation facilitated both pathways of ammonium assimilation and nitrification in native microorganisms to achieve efficient degradation of petroleum hydrocarbons. This study could provide a promising approach for stable, environmental-friendly and efficient remediation of petroleum-contaminated soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.