Abstract

Extensive research has been conducted on the utilization of a metal-based catalyst to activate peracetic acid (PAA) for the degradation of micropollutants (MPs) in water. Mn(II) is a commonly employed catalyst for homogeneous advanced oxidation processes (AOPs), but its catalytic performance with PAA is poor. This study showed that the environmentally friendly chelator ethylenediamine-N,N'-disuccinic acid (EDDS) could greatly facilitate the activation of Mn(II) in PAA for complete atrazine (ATZ) degradation. In this process, the EDDS enhanced the catalytic activity of manganese (Mn) and prevented disproportionation of transient Mn species, thus facilitating the decay of PAA and mineralization of ATZ. By employing electron spin resonance detection, quenching and probe tests, and 18O isotope-tracing experiments, the significance of high-valent Mn-oxo species (Mn(V)) in the Mn(II)-EDDS/PAA system was revealed. In particular, the involvement of the Mn(III) species was essential for the formation of Mn(V). Mn(III) species, along with singlet oxygen (1O2) and acetyl(per)oxyl radicals (CH3C(O)O•/CH3C(O)OO•), also contributed partially to ATZ degradation. Mass spectrometry and density functional theory methods were used to study the transformation pathway and mechanism of ATZ. The toxicity assessment of the oxidative products indicated that the toxicity of ATZ decreased after the degradation reaction. Moreover, the system exhibited excellent interference resistance toward various anions and humid acid (HA), and it could selectively degrade multiple MPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.