Abstract
Abstract Vacuum ultraviolet (VUV) lamps were used to enhance photocatalytic degradation of gaseous benzene. A series of transition metal modified TiO 2 were developed to improve benzene removal efficiency and eliminate ozone byproduct. Among the prepared catalysts, Mn/TiO 2 obtained the best catalytic activity toward benzene oxidation due to its superior capacity for ozone decomposition. The catalysts with better capacity for ozone decomposition have higher benzene removal efficiency. Photocatalytic oxidation efficiency of benzene under VUV irradiation reached 58%, which is over 20 times higher than that under 254 nm UV irradiation. In addition, ozone can be completely eliminated by Mn/TiO 2 . Benzene degradation was greatly enhanced by ozone via catalytic ozonation. Water vapor played a dual role in benzene oxidation in the VUV-PCO process. Catalytic ozonation is mainly responsible for benzene abatement at low humidity while 185 nm photooxidation is the dominant pathway at high humidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.