Abstract

Microbial consortia offer an attractive biodegradation strategy for removing hydrocarbons from oil-contaminated sites. In this study, we explored the degradation properties of Acinetobacter venetianus strain RAG-1 (RAG-1). RAG-1 effectively degrades three crude oils with excellent emulsification activity and cell surface hydrophobicity, while exhibiting broad environmental tolerance. RAG-1 accepts a range of alkane substrates (C10–C38) using three alkane hydroxylases (AlkMa, AlkMb, and AlmA). Bacterial mutant with alkMa or alkMb deletion enhanced degradation of C10–C20 or C22–C32 n-alkanes, respectively. Based on the substrate metabolism of the mutants, adjustable and targeted consortia consisting of ΔalkMa/almA and ΔalkMb were constructed, achieving enhanced degradation (10 days) of light crude oil (73.42% to 88.65%), viscous crude oil (68.40% to 90.05%), and high waxy crude oil (47.46% to 60.52%) compared with the single wild-type strain. The degradation properties of RAG-1 and the engineered consortia strategy may have potential use in microbial biodegradation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.