Abstract

The presence of pharmaceutically active compounds (PhAcs) in water bodies is a major concern due to their persistence, biological activity, and detrimental environmental effects. The present study focuses on the application of pulsed corona plasma technology to degrade such compounds. Three different plasma reactors, namely, sequential flow plasma reactor (SFR), continuous flow top discharge plasma reactor (TDPR) and continuous flow side discharge plasma reactor (SDPR), are designed and fabricated for their performance evaluation with respect to PhAC degradation. In all the reactors, wastewater was discharged as fine droplets for better interaction between the reactive oxidizing species (ROS) generated in the system and the pollutants. Enhanced degradation of the selected pharmaceutical compounds, i.e., diclofenac (DCF) and verapamil hydrochloride (VPL), is achieved with decreased treatment time and lower energy consumption. In SFR reactor water was recycled, whereas in continuous flow reactors hydraulic retention times (HRTs) were varied. The degradation efficiency of DCF (1 mg/L) and VPL (1 mg/L) was 99 % in SDPR, at HRTs of 9 and 12 min, respectively. Deposited energies (SFR- 71 W, TDPR - 92 W, SDPR- 51 W) varied due to the difference in reactor geometries. In the SDPR reactor, 99 % degradation of mixed pollutants with an initial concentration of 10 mg/L was achieved, at a HRT of 21 min. With an input power of 51 W, good energy efficiency (EEO) of 3.8 kWh/m3 and high yield (G) of 256.2 mg/kWh were obtained. . Nitrate formation was reduced by 73.2 % in TDPR and 85.0% in SDPR (32.1–8.6 mg/L) as compared to SFR (32.1 mg/L). The operating cost estimated was 0.71 $/m3, 0.80 $/m3 and 0.67 $/m3 for SFR, TDPR and SDPR, respectively. The results clearly indicate that the continuous flow reactor with side discharge is a viable alternative to traditional plasma reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.