Abstract

Abstract A controllable uniform nanoporous copper (NPC) layer was synthesized on the surface of the ball-milled powder of Mg65Cu25Y10 metallic glass by dealloying. The morphology, the elemental surface composition and the phase structure of the powders were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffractometry, respectively. The composite powder with a core–shell structure shows higher degradation efficiency of the azo dye of Direct Blue 6 than the untreated powder and the pure NPC. The improved performance can be attributed to the strong synergistic effect between the NPC layer and the metallic glass matrix, because the nanoporous structure provides large surface area for the adsorption of the dye molecules and three-dimensional diffusion channels of reaction masses, as well as the dissolution acceleration of the active atoms through local galvanic cell reaction. This tunable pretreatment is a promising surface activation method for novel chemical applications of metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.