Abstract

The effect of solvent molecule on the emission properties of Sm(hfa)3(phen)2 (hfa = hexafluoroacetylacetonato, phen = phenanthoroline) was investigated using acetone, acetonitrile, and pyridine. 5G(5/2) --> 5H(9/2) transition intensities in pyridine were found to be larger than those in corresponding acetone and acetonitrile. The radiative rate constant in pyridine (4.8 x 10(2) s(-1)) was 2 times larger than those in acetonitrile (2.6 x 10(2) s(-1)) and acetone (2.3 x 10(2) s(-1)), although the nonradiative transition via vibrational relaxation (k(nr) = 1.7 x 10(4) s(-1)) in pyridine was the same as those in acetone and acetonitrile (k(nr) = 1.8 x 10(4) s(-1)), resulting in the enhanced emission quantum yield of Sm(III) complex in pyridine (2.7%). The coordination structures of Sm(hfa)3(phen)2 in acetonitrile, acetone, and pyridine were estimated by X-ray single-crystal analyses. These results indicate that enhancement of the emission properties in pyridine is due to faster radiative rate related to formation of asymmetrical nine-coordinated structure, Sm(hfa)3(phen)(py) (py = pyridine).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.