Abstract

Native mass spectrometry (MS) is proving to be a disruptive technique for studying the interactions of proteins, necessary for understanding the functional roles of these biomolecules. Recent research is expanding the application of native MS towards membrane proteins directly from isolated membrane preparations or from purified detergent micelles. The former results in complex spectra comprising several heterogeneous protein complexes; the latter enables therapeutic protein targets to be screened against multiplexed preparations of compound libraries. In both cases, the resulting spectra are increasingly complex to assign/interpret, and the key to these new directions of native MS research is the ability to perform native top-down analysis, which allows unambiguous peak assignment. To achieve this, detergent removal is necessary prior to MS analyzers, which allow selection of specific m/z values, representing the parent ion for downstream activation. Here, we describe a novel, enhanced declustering (ED) device installed into the first pumping region of a cyclic IMS-enabled mass spectrometry platform. The device enables declustering of ions prior to the quadrupole by imparting collisional activation through an oscillating electric field applied between two parallel plates. The positioning of the device enables liberation of membrane protein ions from detergent micelles. Quadrupole selection can now be utilized to isolate protein-ligand complexes, and downstream collision cells enable the dissociation and identification of binding partners. We demonstrate that ion mobility (IM) significantly aids in the assignment of top-down spectra, aligning fragments to their corresponding parent ions by means of IM drift time. Using this approach, we were able to confidently assign and identify a novel hit compound against PfMATE, obtained from multiplexed ligand libraries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call