Abstract

In this study, Fe/Ni bimetallic nanoparticles were supported on the attapulgite (A-Fe/Ni) to enhance the degradation reactivity of decabrominated diphenyl ether (BDE209) in aqueous solution. The Fe/Ni nanoparticles were well distributed on the attapulgite surface with an average diameter of 20–40 nm. The removal percentage of BDE209 by A-Fe/Ni was 1.59 times higher than Fe/Ni nanoparticles alone because attapulgite could act as supporting material to disperse Fe/Ni nanoparticles and prevent Fe/Ni nanoparticles from aggregation. The degradation kinetics for BDE209 debromination by A-Fe/Ni could be well described by a pseudo-first-order model, and the debromination rate constant of BDE209 increased with increasing the dosage of A-Fe/Ni, water/THF ratio, and decreasing the initial BDE209 concentration and solution pH. The degradation products were identified using a third-order polynomial regression equation between the experimental and reference gas chromatography relative retention times. Stepwise debromination from n-bromo-DE to (n − 1)-bromo-DE was a possible pathway with bromines being substituted sequentially by hydrogen. The preferred elimination of bromines of BDE209 by A-Fe/Ni followed the debromination preference of para-Br > meta-Br > ortho-Br. The results provide evidences for understanding the debromination mechanism of polybrominated diphenyl ether by clay-supported Fe/Ni nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.