Abstract

Cytidine is a nucleoside molecule that is widely used as a precursor for antiviral drugs. In this study, a cytidine-producing strain Cyt18 was developed from Escherichia coli K-12 through 3-step genetic manipulation strategies. Cytidine deaminase gene (cdd) was firstly deleted from the E. coli K-12 strain to develop Cyt10. Furthermore, homoserine dehydrogenase gene (thrA) was inactivated from the Cyt10 strain to develop Cyt12, in which the intracellular aspartate concentration was expected to be increased. The recombinant plasmid pMG1105 containing an pyrB-pyrA operon from Bacillus amyloliquefaciens CYTI was constructed and was introduced into Cyt12 to obtain the Cyt18 strain. Compared to the Cyt12 strain, the cytidine production by the recombinant strain Cyt18 was increased by ~3-fold (722.9 mg/l vs. 249.3 mg/l).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.