Abstract

Layered lithium transition-metal oxides, such as LiCoO2 and its doped and lithium-rich analogues, have become the most attractive cathode material for current lithium-ion batteries due to their excellent power and energy densities. However, parasitic reactions at the cathode–electrolyte interface, such as metal-ion dissolution and electrolyte degradation, instigate major safety and performance issues. Although metal oxide coatings can enhance the chemical and structural stability, their insulating nature and lattice mismatch with the adjacent cathode material can act as a physical barrier for ion transport, which increases the charge-transfer resistance across the interface and impedes cell performance at high rates. Here, epitaxial engineering is applied to stabilize a cubic (100)-oriented TiO layer on top of single (104)-oriented LiCoO2 thin films to study the effect of a conductive coating on the electrochemical performance. Lattice matching between the (104) LiCoO2 surface facets and the (100) TiO plane enables the formation of the titanium mono-oxide phase, which dramatically enhances the cycling stability as well as the rate capability of LiCoO2. This cubic TiO coating enhances the preservation of the phase and structural stability across the (104) LiCoO2 surface. The results suggest a more stable Co3+ oxidation state, which not only limits the cobalt-ion dissolution into the electrolyte but also suppresses the catalytic degradation of the liquid electrolyte. Furthermore, the high c-rate performance combined with high Columbic efficiency indicates that interstitial sites in the cubic TiO lattice offer facile pathways for fast lithium-ion transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call