Abstract
SnO2 hollow nanofibers (SnO2 hNFs) are prepared through electrospinning and annealing processes. The polypyrrole layers coated onto the surface of the SnO2 hNFs are annealed in a nitrogen atmosphere. The nitrogen-doped carbon-coated SnO2 hNFs (SnO2/NC hNFs) are composed of SnO2 hNFs with a wall thickness of 60–80 nm and a nitrogen-doped carbon layer ∼10 nm thick. The nitrogen content in the carbon layer is approximately 7.95%. Owing to the nitrogen-doped carbon shell layers, the specific reversible capacity of SnO2/NC hNFs at a current density of 0.2 A g−1 after 100 cycles is 1648 mAh g−1, which is 427% higher than that of (386 mAh g−1) SnO2 hNFs. This strategy may open new avenues for the design of other composite architectures as electrode materials in order to achieve high-performance lithium ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.