Abstract
Nitrogen-doped carbon-coated and graphene oxide-wrapped Fe3O4 nanoparticles were prepared using the electrostatic force between polyethyleneimine-functionalized Fe3O4 nanoparticles and graphene oxide layers, followed by annealing in an N2 atmosphere (Fe3O4@NCG). The electrochemical performance of Fe3O4@NCG was superior to that of graphene oxide- or reduced graphene oxide-wrapped Fe3O4 nanoparticles and carbon-coated Fe3O4 nanoparticles. Fe3O4@NCG exhibited stable specific capacity of ∼895 mAh g−1 after 350 cycles over the voltage range 0.001–3.0 V vs. Li/Li+. The superior performance of Fe3O4@NCG was attributed to the presence of a nitrogen-doped carbon layer and networks of reduced graphene oxide. The chemical route-derived Fe3O4@NCG may be a promising anode material for high-performance lithium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.