Abstract

Majorana bound states (MBSs) nested in a topological nanowire are predicted to manifest nonlocal correlations in the presence of a finite energy splitting between the MBSs. However, the signal of the nonlocal correlations has not yet been detected in experiments. A possible reason is that the energy splitting is too weak and seriously affected by many system parameters. Here we investigate the charging energy induced nonlocal correlations in a hybrid device of MBSs and quantum dots. The nanowire that hosts the MBSs is assumed in proximity to a mesoscopic superconducting island with a finite charging energy. Each end of the nanowire is coupled to one lead via a quantum dot with resonant levels. With a floating superconducting island, the devices shows a negative differential conductance and giant super-Poissonian shot noise, due to the interplay between the nonlocality of the MBSs and dynamical Coulomb blockade effect. When the island is strongly coupled to a bulk superconductor, the current cross correlations at small lead chemical potentials are negative by tuning the dot energy levels. In contrast, the cross correlation is always positive in a non-Majorana setup. This difference may provide a signature for the existence of the MBSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.