Abstract

The effect of perpendicular magnetic anisotropy (PMA) on current-induced domain wall (DW) motion is investigated by micromagnetic simulations. The critical current density JC to drive DWs into periodic transformation and continuous motion by adiabatic spin transfer torque decreases with increasing PMA. Also, with optimized PMA that almost exactly compensates the demagnetizing field, the adiabatic displacement of DWs driven by currents less than JC is strongly enhanced. Since PMA can be controlled easily in magnetic multilayer films, this technique of enhancing current-induced DW motion may be practical for device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.