Abstract

Oocyte vitrification, as a vital step in reproductive medicine, is strongly associated with lower development caused by cryodamaging factors, such as oxidative stress. In this study, we evaluated the antioxidative synergistic effects of Melatonin (Mel) and Resveratrol (RES) coencapsulated by solid lipid nanocarriers (SLNs) against the pure antioxidant combination (Mel+RES). In this research, the formation of Mel+RES-SLN was confirmed by Fourier-transformed infrared spectroscopy. The average mean diameter, size distribution, polydispersity index, and zeta potential of particles were measured by Zetasizer, and the morphology was evaluated by scanning electron microscopy. In addition, the encapsulation efficiency (EE%) or drug loading capacity (DL%) of the nanocapsule was determined by spectrophotometric methods. Germinal vesicle (GV)-stage oocytes harvested from 6- to 12-week-old female NMRI mice were randomly divided into seven groups for in vitro studies. In these groups, (0, 10-12 M + 0.5 μM, 10-9 M + 2 μM, or 10-6 M + 10 μM) of Mel+RES/Mel+RES-SLN were added into vitrification media. After thawing, oocytes were matured, fertilized, and cultured for 3 days. Extra/intracellular reactive oxygen species (ROS) levels were measured in in vitro maturation medium after 24 hours. Our results revealed a significant improvement in the normal morphology of warmed GV-stage oocytes, GV breakdown (GVBD) rate, Metaphase II (MII)-stage oocyte formation, fertilization rate, early embryo development, and a significant reduction in intra/extracellular ROS level when vitrification media was supplemented with the lowest Mel+RES-SLN concentration. In vitro studies also demonstrated that the highest concentration of Mel+RES-SLN was safe, without a detrimental effect on embryonic development upon treatment. In conclusion, the lowest concentration of Mel+RES-SLN supplementation in GV-stage oocyte vitrification media improved maturation, fertilization, and embryo development rate and decreased extra/intracellular ROS level through an enhanced/controlled intracellular penetration compared to the pure Mel+RES.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call