Abstract
An efficient scheme for probing electron tunnelling is proposed based on the enhanced cross-Kerr nonlinearity in a double–dot system. Due to resonant tunnelling, the cross-Kerr nonlinearity arises in a transparency window. Its intensity is nearly two orders of magnitude greater than that of the self-Kerr effect under any given conditions, where residual absorption is suppressed due to the competition of nonlinear gain and absorption. The enhanced cross-Kerr effect is sensitive to the tunnelling, so the probe spectrum can detect subtle tunnelling changes. The simulation results show that the probe sensitivity of the nonlinear phase shift is about 0.28 rad/μeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.