Abstract
The loss-less electrical current-carrying capability of type II superconductors, measured by the critical current density Jc, can be increased by engineering desirable defects in superconductors to pin the magnetic vortices. Here, we demonstrate that such desirable defects can be created in superconducting FeSe0.5Te0.5 films by 6 MeV Au-ions irradiations that produce cluster-like defects with sizes of 10–15 nm over the entire film. The pristine FeSe0.5Te0.5 film exhibits a low anisotropy in the angular dependence of Jc. A clear improvement in the Jc is observed upon Au-ion irradiation for all field orientations at 4.2 K. Furthermore, a nearly 70% increase in Jc is observed at a magnetic field of 9 T applied parallel to the crystallographic c-axis at 10 K with little reduction of the superconducting transition temperature Tc. Our studies show that a dose of 1 × 1012 Au cm–2 irradiation at a few MeV is sufficient in order to provide a strong isotropic pinning defect landscape in iron-based superconducting films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.