Abstract

Microbial self-healing of concrete has been widely investigated, yet the suggested microbial pathways are limited to ureolysis and the aerobic oxidation of carbon sources. Each of these pathways has certain environment and process related drawbacks which arise a need for an alternative pathway to proceed further. This study presents the NO3− reduction as an alternative microbial self-healing strategy. In the tests, we used previously described NO3− reducing bacteria, and two different porous protective carriers. The highest crack width healed by the bacteria was 370 ± 20 μm in 28 days and 480 ± 16 μm in 56 days. Water tightness regain up to 85% was achieved at the end of 56 days for 465 ± 21 μm crack width. Precipitates were identified as forms of CaCO3 and were abundant in microbial specimens particularly on the inner crack surface. The findings evidence the potential of the NO3− reduction pathway for development of microbial self-healing concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.