Abstract
Integrated microwave photonics (IMWP) is a novel field in which the fast-paced progress in integrated, on-chip, optics is harnessed to provide breakthrough performances in well-established microwave photonic processing functions, which are traditionally realized using discrete optoelectronic components. A field where IMWP can have a strong impact is the one of Antenna Arrays for 5G networks. Such arrays offer a number of attractive characteristics, including a conformal array profile, electronic beamforming (beam shaping and beam steering), interference nulling and the capability to generate multiple antenna beams simultaneously. In many cases, however, the performance of a phased array is limited by the characteristics of the beamforming network (BFN) used. It is generally desired to realize beamformers with broad instantaneous bandwidth, continuous amplitude, and delay tunability while, at the same time, capable of feeding large arrays. This, however, is very challenging to achieve using only electronics. For this reason, in the last few years, an increasing amount of research has been directed to beamforming in the optical domain using, integrated microwave photonics solutions. Besides antenna array applications, opportunities for cost effective use of IMWP in switched delay lines has become feasible due to the continuous improvement of optical chips, particularly the achieved record-low propagation losses in Si 3 N 4 /SiO 2 -based-chips combined with the high integration density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.