Abstract

Purpose The purpose of this paper is to enhance the corrosion resistance of Cr-Mn austenitic stainless steel (ASS) via low temperature salt bath nitriding and to replace the convectional Cr-Ni ASS with newly developed enhanced corrosion resistive Cr-Mn ASS. Design/methodology/approach The low temperature salt bath nitriding was performed on Cr-Mn ASS at 450°C for 3 h in potassium nitrate salt bath. Findings The present paper compares the corrosion resistance of salt bath nitrided Cr-Mn ASS with convectional Cr-Ni ASSs (316 L and 304 L ASSs) in 3.5 per cent NaCl by electrochemical techniques. The electrochemical impedance spectroscopy result shows the increase in film resistance and potentiodynamic polarization results show the enhanced corrosion resistance of nitrided Cr-Mn ASS, which is almost equivalent to that of 316 L and 304 L ASSs. This is attributed to the formation of nitrogen supersaturated dense nitride layer. The present results therefore suggest that the nitrided Cr-Mn ASS may replace costly convectional Cr-Ni ASSs for commercial and industrial applications. Originality/value Ever-increasing price of nickel (Ni) is driving the industries to use Ni-free or low-Ni austenitic stainless steels (ASSs). But its corrosion resistance is relatively poor as compared to conventional Cr-Ni ASSs. However, its corrosion resistance can be improved by nitriding. The low temperature salt bath nitriding of Cr-Mn ASS and its electrochemical behavior in 3.5 per cent NaCl has not been studied. The present research paper is beneficial for industries to use low cost Cr-Mn, enhance its corrosion resistance and replace the use of costly conventional Cr-Ni ASSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.