Abstract
This study aims to enhance the practical performance of PVDF/ZnO and PVDF/TiO2 composite coatings known for their distinctive properties. The coatings, applied through spray coating with PVDF and ZnO or TiO2 nanoparticles on glass, steel, and aluminum substrates, underwent a comprehensive evaluation. Surface wetting properties and morphology were respectively evaluated using a technique involving liquid droplets and an imaging method using high-energy electrons. Potentiodynamic polarization was used to compare corrosion resistance between coated and bare substrates. Nanoindentation was used to assess coating hardness, and bonding strength was subsequently quantified. The results revealed that PVDF/ZnO composite coatings had higher water contact angles (161 ± 5° to 138 ± 2°) and lower contact angle hysteresis (7 ± 2° to 2 ± 1°) compared to PVDF/TiO2 and PVDF coatings. Moreover, corrosion tests demonstrated superior protection for steel and aluminum surfaces coated with superhydrophobic PVDF/ZnO. Nanoindentation indicated enhanced mechanical properties with TiO2 nanoparticles, with adhesion results favoring TiO2 over ZnO nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.