Abstract

To improve corrosion and wear resistances of the Zirconium(Zr) based alloys which are widely applied in nuclear reactors and chemical corrosion-resistant equipment, a new surface modification scheme was designed to deposit a Zr75Cu25 coating on Zr substrate by using magnetron sputtering technique. The microstructure and the phase composition were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffraction measurements. The tribological properties and the corrosion resistance were investigated by performing reciprocating tribo-tester and electrochemical tests, respectively. It is found that the Zr75Cu25 coating is made up of a mixture of amorphous and α-(Zr) nanocrystalline phases. The nanocrystalline particles with a size of 5–10 nm are homogenously dispersed in the amorphous matrix. The Zr75Cu25 coating shows excellent tribological properties, due to the dispersion strengthen caused by the homogeneous distribution of α-(Zr) nano-size particles among the amorphous matrix. In addition, it is revealed that the Zr75Cu25 coating makes the Zr substrate exhibit excellent corrosion resistance, due to the robust passive film with a compact structure of the amorphous/nanocrystalline mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.