Abstract

Zeaxanthin is a value-added carotenoid with wide applications. This study aims to manipulate a generally recognized as safe and carotenoid-producing bacterium, Sphingobium sp., for enhanced production of zeaxanthin and exopolysaccharides. First, whole-genome sequencing and analysis of pathway genes were applied to define the carotenoid pathway in Sphingobium sp. Second, a Sphingobium transformation system was established to engineer metabolite flux into zeaxanthin. By a combination of chemical mutagenesis and removal of bottlenecks of carotenoid biosynthesis via overexpression of three rate-limiting enzymes, the genetically modified Sphingobium DIZ strain produced 21.26 mg/g dry cell weight of zeaxanthin, which was about 4-fold higher than the wild type. Upon optimization of culture conditions, the DIZ strain produced 479.5 mg/L of zeaxanthin with the productivity of 4.99 mg/L/h and 21.9 g/L of exopolysaccharides using a fed-batch fermentation strategy. This study represents the first genetic manipulation of Sphingobium sp., a biotechnologically important bacterium, for high-yield production of value-added metabolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call