Abstract

Electrical power production by renewable energy sources is unpredictable in nature and this may cause imbalance between power generation and demand. Therefore, an accurate prediction of solar radiation is crucial for the stability and efficient management of electric grid. This study focuses on very short-term forecasts of solar radiation with a horizon in the range of 5–15 min. In this paper, a Convolutional Neural Network is proposed that uses sequences of infrared images captured by an All-Sky Imager to forecast the Global Horizontal Irradiance on different time horizon. A real case study, exploiting six months of high-resolution data, is analyzed. Additionally, an innovative technique, the Enhanced Convolutional Neural Network (ECNN), is proposed in which exogenous data, as the solar radiation measurement, is encoded in terms of colored pixels in the upper corner of the images. Considering the naïve persistence method as a baseline, a clear improvement across the key metrics has been noted with the proposed methodology. A deeper analysis of the results reveals that the proposed models are more accurate than persistence when high fluctuations of solar radiation are experienced. In that case, the ECNN achieves a forecast skill exceeding 19% for all the tested forecast horizons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call