Abstract

The ability to match two complementary polymers constitutes an important step forward in the design of electrochromic devices (ECDs). Here we show that the necessary control over the color, brightness, and environmental stability of an electrochromic window can be achieved through the careful design of anodically coloring polymers. For this purpose, we have constructed ECDs based on dimethyl substituted poly(3,4-propylenedioxythiophene) (PProDOT-Me2) as a cathodically coloring layer, along with poly[3,6-bis(2-ethylenedioxythienyl)-N-methyl-carbazole] (PBEDOT-NMeCz) and N-propane sulfonated poly(3,4-propylenedioxypyrrole) (PProDOP−NPrS) as anodically coloring polymers. Comparison of the results shows that using PProDOP−NPrS as the high band gap polymer has several advantages over the carbazole counterpart. The main benefit is the opening of the transmissivity window throughout the entire visible spectrum by moving the π−π* transition of the neutral anodically coloring material into the ultraviolet region. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.