Abstract
Presently, the formation of oxide films on the surface of Ti-based bipolar plates results in decreased electrical conductivity. This limitation frequently curtails the operational lifespan of proton exchange membrane fuel cells (PEMFCs). In this study, we engineered Ti alloy bipolar plate materials using an elemental screening process and validated their performance through experimentation. The elemental screening results identified eight elements, specifically Ni, Cr, Mo, Ta, W, Fe, Co, and Zn, as promising candidates for bipolar plate materials. Among these, Mo exhibited a pronounced affinity for incorporation into the TiO2 oxide film. Conductivity measurements of passivated bipolar plates indicated that the Ti–Mo alloy displayed excellent electrical conductivity (1.699 × 1020 Ω m−1). Notably, the introduction of Mo (with an energy level of 1.64 eV) significantly reduced the band gap of the oxide film. Importantly, even after continuous potential oxidation for 10,000 s, the interfacial contact resistance (ICR) of Ti-0.35Mo (9.80 mΩ cm2) remained below the threshold set by the American DOE standard (ICR <10 mΩ cm2). Consequently, this research successfully devised a bipolar plate material utilizing a Ti–Mo alloy and proposed an innovative strategy for improving the conductivity of oxide films in bipolar plate materials via an elemental screening approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.