Abstract

Conductance, on-site and inter-site charge fluctuations and spin correlations in the system of two side-coupled quantum dots are calculated using the Wilson's numerical renormalization group (NRG) technique. We also show spectral density calculated using the density-matrix NRG, which for some parameter ranges remedies inconsistencies of the conventional approach. By changing the gate voltage and the inter-dot tunneling rate, the system can be tuned to a non-conducting spin-singlet state, the usual Kondo regime with odd number of electrons occupying the dots, the two-stage Kondo regime with two electrons, or a valence-fluctuating state associated with a Fano resonance. Analytical expressions for the width of the Kondo regime and the Kondo temperature are given. We also study the effect of unequal gate voltages and the stability of the two-stage Kondo effect with respect to such perturbations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call