Abstract
The next generation 6G communication network is typically characterized by the full connectivity and coverage of Users Equipment (UEs). This leads to the need for moving beyond the traditional two-dimensional (2D) coverage service to the three-dimensional (3D) full-service one. The 6G 3D architecture leverages different types of non-terrestrial or aerial nodes that can act as mobile Base Stations (BSs) such as Unmanned Aerial Vehicles (UAVs), Low Altitude Platforms (LAPs), High-Altitude Platform Stations (HAPSs), or even Low Earth Orbit (LEO) satellites. Moreover, aided technologies have been added to the 6G architecture to dynamically increase its coverage efficiency such as the Reconfigurable Intelligent Surfaces (RIS). In this paper, an enhanced Computational Intelligence (CI) algorithm is introduced for optimizing the coverage of UAV-BSs with respect to their location from RIS in the 3D space of 6G architecture. The regarded problem is formulated as a constrained 3D coverage optimization problem. In order to increase the convergence of the proposed algorithm, it is hybridized with a crossover operator. For the validation of the proposed method, it is tested on different scenarios with large-scale coordinates and compared with many recent and hybrid CI algorithms, as Slime Mould Algorithm (SMA), Levy Flight Distribution (LFD), hybrid Particle Swarm Optimization and Gravitational Search Algorithm (PSOGSA), the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and hybrid Grey Wolf Optimizer and Cuckoo Search (GWOCS). The experiment and the statistical analysis show the significant efficiency of the proposed algorithm in achieving complete coverage with a lower number of UAV-BSs and without constraints violation.
Highlights
Speaking, the usage of fifth-generation (5G) technology is adequate for the current demand of several countries
Unmanned Aerial Vehicles (UAVs)-Base Stations (BSs) must be allocated at a certain angle and distance from Reconfigurable Intelligent Surfaces (RIS) and the coverage must be maximized without constraints violation
It is compared with several other Computational Intelligence (CI) algorithms, including Coyote Optimization Algorithm (COA) [24], Harris Hawks Optimization (HHO) [25], Slime Mould Algorithm (SMA) [26], Lévy Flight Distribution (LFD) [27], Salp Swarm Algorithm (SSA) [28], and Whale Optimization Algorithm (WOA) [29]
Summary
The usage of fifth-generation (5G) technology is adequate for the current demand of several countries. As shown in Fig., the 3D hierarchy of 6G technology contains various aerial objects in each networking layer, such as Unmanned Aerial Vehicles (UAVs), Low Altitude Platforms (LAPs), High-Altitude Platform Stations (HAPSs), and Even Low Earth Orbit (LEO) satellites The cooperation of these flying objects can be utilized to deliver unified and affordable high-level Quality of Services (QoS) to Users Equipment (UEs) especially for remote areas and emergency scenarios [2]. Unmanned Aerial Vehicle Base Stations (UAV-BSs) are mobile base stations with an unprecedented degree of freedom which makes them work in the low-frequency, microwave, and mm-wave bands These features provide more flexible and reliable connectivity and on-demand timeand spatially-varying services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.