Abstract

In comparison to monolithic composite structures, tailored multi-material structures offer high potential considering lightweight design approaches in combination with cost efficient manufacturing processes. Roll forming enables flexible large scale production of hybrid structures, due to the continuous manufacturing process as well as high degree of automation. The multi-material structures consist of steel sheets which are selectively reinforced by unidirectional carbon fibre reinforced thermoplastics (CFR-TP). In view of minimizing process steps and decreasing cycle times, both materials are joined by fusion bonding. Therefore, CFR-TP is heated above melting temperature of thermoplastic matrix and joined to the steel surface under defined pressure and time. However, joining of both materials within a continuous process is still challenging due to a lack in terms of process comprehension. Consequently, multi-material specimens were manufactured depending on various process parameters as temperature of either material or processing speed and tested mechanically by floating roller peel test for the evaluation of the adhesion between both materials. Furthermore, viscosity of matrix was determined and investigations of CFR-TP interface were performed by Fourier transform infrared spectroscopy. The results show the requirement of a defined CFR-TP temperature and the change in crystalline structure of the matrix in dependency of the processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call