Abstract
Electrochromic technologies that exhibit low power consumption have been spotlighted recently. In particular, with the recent increase in demand for paper-like panel displays, faster coloration time has been focused on in researching electrochromic devices. Tungsten trioxide (WO3) has been widely used as an electrochromic material that exhibits excellent electrochromic performance with high thermal and mechanical stability. However, in a solid film-type WO3 layer, the coloration time was long due to its limited surface area and long diffusion paths of lithium ions (Li-ions). In this study, we attempted to fabricate a fibrous structure of WO3@poly(ethylene oxide) (PEO) composites through electrospinning. The fibrous and porous layer showed a faster coloration time due to a short Li-ion diffusion path. Additionally, PEO in fibers supports Li-ions being quickly transported into the WO3 particles through their high ionic conductivity. The optimized WO3@PEO fibrous structure showed 61.3 cm2/C of high coloration efficiency, 1.6s fast coloration time, and good cycle stability. Lastly, the electrochromic device was successfully fabricated on fabric using gel electrolytes and a conductive knitted fabric as a substrate and showed a comparable color change through a voltage change from -2.5 V to 1.5 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.