Abstract

The irradiation of sublimed fullerene (C60 and C70) thin films with ultraviolet light in an oxygen-rich ambient has been found to lead to a substantially increased cohesive energy in the fullerene solid. The decreased solubility and lower vapor pressure of the phototransformed material enables wet (organic solvents) or dry (thermal or photon-induced sublimation) development of photo-defined negative images. One micrometer wide lines with good edge definition are demonstrated. X-ray, infrared, optical absorption, and high performance liquid chromatography reveal that photo-oxygenated C60 retains its fcc crystal structure but with a substantial fraction of the C60 molecules modified with carbonyl (C=O) bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call