Abstract

One promising proposal for CO2 capture and storage is based on hydrate technology, which grapples with challenges related to stringent formation conditions and slow formation rates. In this study, the induction time, gas uptake and the rate of CO2 hydrate formation were measured with varying concentrations (ranging from 0.05 wt% to 0.2 wt%) of L-Methionine (L-Met) and sodium dodecyl sulfate (SDS). Remarkably, the novel additive hydrogen-rich stone significantly reduced the induction time by 89.74 % and 85.16 %, even under static conditions. The morphology analysis reveals that L-Met foster the creeping growth of hydrates, resulting in an approximate 41.89 % increase in the initial 1 h gas uptake. The efficient heat diffusion further enables the rapid formation of hydrates, resulting in a high gas uptake in a short period. L-Met outperforms SDS in terms of induction time and gas uptake, with the optimal choice for CO2 hydrate formation being 0.1 wt% L-Met. This study briefly describes the mechanisms of three different kinetic promoters for hydrate formation, which provides new ideas for subsequent studies on CO2 capture and storage via hydrate technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.