Abstract

AbstractIt is of great significance to reveal the detailed mechanism of neighboring effects between monomers, as they could not only affect the intermediate bonding but also change the reaction pathway. This paper describes the electronic effect between neighboring Zn/Co monomers effectively promoting CO2 electroreduction to CO. Zn and Co atoms coordinated on N doped carbon (ZnCoNC) show a CO faradaic efficiency of 93.2 % at −0.5 V versus RHE during a 30‐hours test. Extended X‐ray absorption fine structure measurements (EXAFS) indicated no direct metal–metal bonding and X‐ray absorption near‐edge structure (XANES) showed the electronic effect between Zn/Co monomers. In situ attenuated total reflection‐infrared spectroscopy (ATR‐IR) and density functional theory (DFT) calculations further revealed that the electronic effect between Zn/Co enhanced the *COOH intermediate bonding on Zn sites and thus promoted CO production. This work could act as a promising way to reveal the mechanism of neighboring monomers and to influence catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.